Experimental Heat Transfer Enhancement for Single Phase Liquid Micro-Channel Cooling Using A Micro-Synthetic Jet Actuator

نویسندگان

  • Ruixian Fang
  • Wei Jiang
  • Jamil Khan
  • Roger Dougal
چکیده

The present work experimentally investigates the thermal effects of a synthetic jet actuator on the heat transfer performance of single-phase flow confined in a microchannel heat sink. The heat sink consisted of a single rectangular microchannel 500 μm wide, 300 μm deep and 26 mm long. Deionized water was employed as the cooling fluid. A synthetic jet actuator with a 100 μm diameter orifice was placed right above the microchannel and 5 mm downstream from the channel inlet. A Unimorph piezoelectric disc bender was employed as the synthetic jet actuator. The effects of the bulk microchannel flow Reynolds number, the synthetic jet operating voltage and frequency on the microchannel heat transfer performance are being investigated. The Reynolds number ranges from 100 to 500. The actuator driving voltage and frequency ranges in 20-180Vp-p and 10-150 Hz respectively. The results from the case without synthetic jet are compared to those with synthetic jet. It shows that the thermal effects of the synthetic jet are functions of the jet driving voltage, frequency, as well as the bulk mass flow rate in the microchannel. For the case of Reynolds number equal 177, around 24% enhancement is achieved under specified jet operating conditions for a single synthetic jet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Heat Transfer Enhancement in Single-phase Liquid Microchannel Cooling with Cross-flow Synthetic Jet

The present study experimentally investigated a new hybrid cooling scheme by combination of a microchannel heat sink with a micro-synthetic jet actuator. The heat sink consisted of a single rectangular microchannel measured 550 μm wide, 500 μm deep and 26 mm long. The synthetic jet actuator with a 100 μm diameter orifice was placed right above the microchannel and 5 mm downstream from the chann...

متن کامل

Single-phase and two-phase heat transfer characteristics of low temperature hybrid micro-channel/micro-jet impingement cooling module

This study examines the single-phase and two-phase cooling performance of a hybrid micro-channel/micro-jet impingement cooling scheme using HFE 7100 as working fluid. This scheme consists of supplying coolant from a series of jets that deposit liquid into the micro-channels. A single-phase numerical scheme that utilizes the k–e turbulent model and a method for determining the extent of the lami...

متن کامل

Unsteady Numerical Investigations of Flow and Heat Transfer Characteristics of Nanofluids in a Confined Jet Using Two-Phase Mixture Model

The development of high-performance thermal systems has increased interest in heat transfer enhancement techniques. The application of additives to heat transfer liquids is one of the noticeable effort to enhance heat transfer. In this paper two-dimensional unsteady incompressible nanofluid flow in a confined jet at the laminar flow regime is numerically investigated. The Mixture model is consi...

متن کامل

Single-phase hybrid micro-channel/micro-jet impingement cooling

A new hybrid cooling scheme is proposed for high-flux thermal management of electronic and power devices. This scheme combines the cooling benefits of micro-channel flow and micro-jet impingement with those of indirect refrigeration cooling. Experiments were performed to assess single-phase cooling performance using HFE 7100 as working fluid. Excellent predictions were achieved using the standa...

متن کامل

Experimental and numerical investigation of single-phase heat transfer using a hybrid jet-impingement/micro-channel cooling scheme

Experimental and numerical methods were used to explore the cooling performance of a new hybrid device consisting of a slot jet impinging into a micro-channel, thus capitalizing upon the merits of both cooling configurations. The three-dimensional heat transfer characteristics of this device were analyzed using the standard k–e turbulent model. Numerical predictions for liquid PF-5052 show exce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009